- Simplify annotation process and handling of matched results.
matchMz
andmatchSpectra
functions.- Matching configured with specific
Param
object. - Tutorial.
1Institute for Biomedicine, Eurac Research, Italy
2Helmholtz Center Munich, Germany
https://github.com/jorainer/MetaboAnnotationIntro
matchMz
and matchSpectra
functions.Param
object.matchMz
matchMz(query, target, param)
query
: features to annotate. Can be numeric
, data.frame
or SummarizedExperiment
.target
: annotations, can be numeric
, data.frame
, CompDb
(not yet).param
:
MzParam
: match query and target m/z values.MzRtParam
: same as above with additional retention times.Mass2MzParam
: target provides exact masses. m/z for (specified) adducts are calculated and matched.Mass2MzRtParam
: same as above with additional retention times.Matched
object: contains query
, target
and parameter (reproducibility).Matched
object: contains query
, target
and parameter (reproducibility).Matched
object: contains query
, target
and parameter (reproducibility).Matched
object: contains query
, target
and parameter (reproducibility).Matched
object: contains query
, target
and parameter (reproducibility).matchSpectra
matchSpectra(query, target, param)
query
: Spectra
.target
: Spectra
(e.g. representing MassBank data).param
:
CompareSpectraParam
: match spectra with score above threshold. Pre-filter by precursor m/z or presence of certain peak.MatchForwardReverseParam
: same as above, but calculates also the reverse score.CompDb
(and IonDb
= + retention times) databases for matchMz
.Matched
and MatchedSpectra
objects?library(MetaboAnnotation) ms1_features <- read.table(system.file("extdata", "MS1_example.txt", package = "MetaboAnnotation"), header = TRUE, sep = "\t") head(ms1_features)
## feature_id mz rtime ## 1 Cluster_0001 102.1281 1.560147 ## 2 Cluster_0002 102.1279 2.153590 ## 3 Cluster_0003 102.1281 2.925570 ## 4 Cluster_0004 102.1281 3.419617 ## 5 Cluster_0005 102.1270 5.801039 ## 6 Cluster_0006 102.1230 8.137535
target_df <- read.table(system.file("extdata", "LipidMaps_CompDB.txt", package = "MetaboAnnotation"), header = TRUE, sep = "\t") head(target_df)
## headgroup name exactmass formula chain_type ## 1 NAE NAE 20:4;O 363.2773 C22H37NO3 even ## 2 NAT NAT 20:4;O 427.2392 C22H37NO5S even ## 3 NAE NAE 20:3;O2 381.2879 C22H39NO4 even ## 4 NAE NAE 20:4 347.2824 C22H37NO2 even ## 5 NAE NAE 18:2 323.2824 C20H37NO2 even ## 6 NAE NAE 18:3 321.2668 C20H35NO2 even
parm <- Mass2MzParam(adducts = c("[M+H]+", "[M+Na]+"), tolerance = 0.005, ppm = 0) matched_features <- matchMz(ms1_features, target_df, parm) matched_features
## Object of class Matched ## Total number of matches: 9173 ## Number of query objects: 2842 (1969 matched) ## Number of target objects: 57599 (3296 matched)
whichQuery
, whichTarget
to get the indices of matched elements.colnames
to return the available columns names.colnames(matched_features)
## [1] "feature_id" "mz" "rtime" ## [4] "target_headgroup" "target_name" "target_exactmass" ## [7] "target_formula" "target_chain_type" "adduct" ## [10] "score"
"target_"
is used for column names of the target.matchedData(matched_features, c("feature_id", "adduct", "target_name"))
## DataFrame with 10046 rows and 3 columns ## feature_id adduct target_name ## <character> <character> <character> ## 1 Cluster_0001 NA NA ## 2 Cluster_0002 NA NA ## ... ... ... ... ## 2841 Cluster_2841 [M+Na]+ ACer 60:1;O4 ## 2842 Cluster_2842 [M+H]+ Hex2Cer 42:2;O2
matched_features
## Object of class Matched ## Total number of matches: 9173 ## Number of query objects: 2842 (1969 matched) ## Number of target objects: 57599 (3296 matched)
matched_features <- pruneTarget(matched_features) matched_features
## Object of class Matched ## Total number of matches: 9173 ## Number of query objects: 2842 (1969 matched) ## Number of target objects: 3296 (3296 matched)
matched_features
## Object of class Matched ## Total number of matches: 9173 ## Number of query objects: 2842 (1969 matched) ## Number of target objects: 3296 (3296 matched)
matched_features <- matched_features[whichQuery(matched_features)] matched_features
## Object of class Matched ## Total number of matches: 9173 ## Number of query objects: 1969 (1969 matched) ## Number of target objects: 3296 (3296 matched)